
The Development of
Object Code Verification

Software Technology

Article by Bill StClair originally published in Automotive Electronics Magazine Feb/Mar 2006

Bill StClair of LDRA looks at the increasing need for
verifying object code in software development

The Development of
Object Code Verification

An ever increasing reliance upon software control has

meant that many companies from the automotive and

other business sectors that do not have a traditional

requirement for sophisticated software analysis now

find themselves compelled to undertake safety-critical/

safety related testing by the nature of the applications

they now develop.

With this increased requirement for software test-

ing across different industries a tendency has emerged

for companies to look outside their own market sector

when seeking best practice techniques or standards.

Examples of such industry crossover have been seen in

the automotive and avionics industries with the adop-

tion of elements of the DO-178B standard in the former

and a similar adoption of the MISRA standard in the

latter.

With out of sector testing standards comes the poten-

tial for unfamiliar testing techniques. This is illus-

trated by, amongst others, the object code verification

requirements of the DO-178B standard. While a key

testing element of many avionics programmes it has

been a relatively un-used technique outside this indus-

try.

The increasing sophistication and safety-critical nature

of many modern embedded control applications, how-

ever, mean that as non-avionics based suppliers adopt

DO-178B then object code verification is one of the key

elements that they have to sit up and take notice of.

In a nutshell, object code verification is concerned with

how much the control flow structure of the compiler

generated object code differs from that of the applica-

tion source code from which it was derived. Such dif-

ferences may occur for a number of reasons, e.g. com-

piler interpretation, optimisation, etc. Given, however,

that traditional structural coverage techniques are

applied at the source code level whereas it is actually

the object code that executes on the processor, differ-

ences in control flow structure between the two can

make for significant gaps in the testing process.

The demands of DO-178B are such that developers

of applications that are subject to the standard are

required to implement object code verification facilities

for those elements of the application that have a Level-

A (safety-critical) classification.

 While this is often a sub-set of the applica-

tion as a whole, it can nevertheless represent

a significant amount of testing effort and

hence require considerable resources in terms

of time and money.

 As such, opportunities to implement auto-

mated, compiler- independent processes can

help to reduce overall development costs by

considerable margins.

Bill StClair of LDRA looks at the increasing need for verifying
object code in software development

Figure 1.
High and Low level examples
of flow graphs

Bill St. Clair of LDRA

Object Code Verification
So what is object code verification?

The relevant section of the DO-178B standard

(6.4.4.2 Structural Coverage Analysis) describes

the requirement as follows:

“The structural coverage analysis may be per-

formed on the source code, unless the software

is level A and the compiler generates object

code that is not directly traceable to source code

statements. Then, additional verification should

be performed on the object code to establish the

correctness of such generated code sequences.

A compiler generated array bound check in the

object code is an example of object code that is

not directly traceable to the source code.”

2

Object Code Verification Solutions
The software development market has recognised and

responded to the increasing requirement for object code veri-

fication test facilities from differing industry sectors and many

software tool vendors can now provide either partial or com-

plete structural coverage analysis solutions for both source

and object code from unit to system and integration levels.

The differing solutions on the market tend to utilise combina-

tions of both high and object level (assembler) source code

variants of tool suites with the object level tool variant being

determined by the target processor that the application is

required to run on. A typical example might see a combination

of C/C++ as a high-level language and TMS320C25x Assembler

at the object level with copies of appropriate tools teamed

together to provide the necessary structural coverage facili-

ties. Many other high level/assembler language combinations

are supported by a variety of tool vendors and examples of

the well known coverage metrics that these solutions typically

support are listed below.

Object Code Verification at the Unit Level

Some tool vendors have taken a significant step further by

extending their object code verification solutions to provide

partial or fully automated facilities that are targeted at the

unit test level and hence enable this sophisticated analysis

technique to be applied at a much earlier stage of the soft-

ware development life-cycle.

This Object-box Mode, as the unit test object code verification

facility is referred to by some vendors, enables users to cre-

ate test cases for structural coverage of high-level source and

apply these exact same test cases to the structural coverage

of the corresponding object code.

Key to this facility is the generation of an enhanced driver

program which, depending on the sophistication of the vendor

solution, is either automatically created or created by manual

or partially automated means.This driver encapsulates the

entire test environment, defining, running and monitoring the

test cases through initial test verification and then subse-

quent regression analysis. In Object-box Mode this driver may

be linked with either the high-level source unit or the associ-

ated object code. In so doing users can ensure that a uniform

test process may be applied and compared in order to deter-

mine any discrepancies / deficiencies.

If structural coverage discrepancies / deficiencies are iden-

tified at the object level users are then presented with an

opportunity to define additional test cases to close any gaps

in the test process. The obvious advantage of being able to

identify and apply corrective action at such an early software

development stage is that it is much easier and cheaper. It

also significantly increases the quality of the code and the

overall test process with the latter reaping benefits at the later

stages of integration and system testing and then onward in

the form of reduced failure rates / maintenance costs when

the application is in the field.

While the code is still under development, together with sat-

isfying the necessary object code verification requirements

in a highly automated and cost-effective manner, developers

can also benefit from the considerable additional test feed-

back that is provided by software testing tools in the form of

sophisticated Code Review and Design Review elements. The

results of these analysis facilities can be fed back to the devel-

opment team with the possibility that further code and design

deficiencies may be identified and rectified, further enhancing

the quality of the application as a whole.

Figure 2: High and Low level examples of dynamic analysis coverage reports

• Statement

• Branch

• Test path

• Procedure/Function Call

• Boolean Expression

Coverage

• Branch Decision Condition

• Branch Condition

Combination

• Modified Condition/Decision

 (DO-178B)*

 (*Language dependent)

3

Conclusion
There is no doubt that object code verification presents a significant challenge to those software development

projects that are required to undertake it.With the right tools and facilities, however, the scope of these challenges

may be greatly reduced thus enabling developers to realise the full potential and benefits that such analysis may

bring in terms of increased code quality and reliability.

Bill St Clair is a Technical Evangelist at LDRA

www.ldra.com

LDRA Headquarters

Portside, Monks Ferry,
Wirral, CH41 5LH
Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

LDRA Technology Inc. (US)

Lake Amir Office Park
1250 Bayhill Drive Suite # 360
San Bruno CA 94066
Tel: (650) 583 8880

