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Abstract. This paper outlines a number of static analysis techniques 
that may be regarded as formal methods in the sense of being 
mathematically based. The techniques form part of a well-known, 
commercially available tool suite, the LDRA tool suite. Many customers 
who use the tool suite, particularly those in the avionics software 
industry, regularly use the techniques to conform to the standards of 
appropriate certification bodies. Such practitioners would not normally 
regard themselves as employing formal methods. It is as if the formal 
methods are there ‘by stealth’, somewhat akin to a stealth plane that is 
invisible to radar. 
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1 Introduction 
 
Many software practitioners, if asked about the use of formal methods in their 
environment, would reply that they never use such methods. Whilst this 
statement Many might be true in most environments, it is factually untrue in 
others. The reason for this is that these practitioners are often unaware that 
they are actually using such methods because this fact is not visible to them.  
   
In this paper, the term ‘formal methods’ will be used in the sense of 
mathematically-based analysis techniques which are applied to an 
appropriate model of the complete, or partially complete, software. The formal 
methods built into a well-known test tool over a period of some thirty years are 
described. The paper describes how it is substantially due to these methods 
that the tool has been successful in some of the most demanding application 
areas. 

 
The LDRA tool suite [1] commenced life in the 1970s as a dynamic analysis 
tool obtaining test coverage metrics [2]. In the intervening years, apart from 
being made available in some fourteen different languages from ADA to 
assembly language, it has been substantially enhanced in the area of static 
analysis. The main thrust of this static analysis has been to focus on the issue 
of detecting violations of programming standards and the enforcement of 
constraints such as strong type checking and the application of powerful 
algorithms to detect defects of many types. 
 
One factor which marks this tool suite as unique is the fact that the various 
forms of static analysis are applied to the complete set of languages where 
applicable and, in most cases, are dialect independent. Most of the 
sophistication in the tool lies in this dialect independence. 
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The paper is organized as follows. Section 2 gives brief descriptions of the 
various techniques and Section 3 attempts to give some insights into typical 
tool usage. Finally, Section 4 makes some concluding remarks. 
 
 
2 The Formal Methods Techniques 
 
Traditionally, formal methods are regarded as the use of mathematically-
based models in some specification or design notation, such as Z or finite 
state machines (FSMs). In recent times the use of various modelling 
techniques have also become associated with the term formal methods and it 
is this relationship which is relevant to this paper. In the current context, there 
are two underlying models which form the principal basis for most of the 
techniques to be described; these are the control flowmodel and the dataflow 
model. 
 
Control flow modelling. The tool constructs a graphical control flow model in 
which the nodes are basic blocks and the arcs are control flow jumps and 
branches. This model handles programs regardless of structure, including 
many types of interrupt and exception handling methods, recursion (self 
recursion and multi-procedural recursion) and multiple file representation. The 
model is produced system wide, i.e. for the entire program, and has an 
elaborate set of display, navigation and reproduction facilities. The model can 
be reduced to yield an annotated call graph or annotated flow graph. The 
representation is capable of handling procedural and label parameters, arrays 
of pointers-to-procedures and polymorphism. 
 
Dataflow modelling. The dataflow model consists of an enhanced version of 
the control flow model annotated with operations on the program variables 
and constants. It performs the aliasing operations across procedure 
boundaries and other more specific aliasing operations (pointers and 
references, etc.). The model is again system wide. The model can be 
accessed to obtain the set of operations on specific variables, or collections of 
variables. 

 
The basic models are, in essence, reverse engineered from the program code. 
They are then used to provide the basis for a number of specific algorithms which 
concentrate on discovering particular kinds of program defects and properties. 
 
 
2.1 Data Flow Analysis 
 
The dataflow model, annotated with the variables and operations performed on 
them, is the basis for this technique [3]. Powerful graph theoretic algorithms are 
applied to the system-wide control flow model to yield a number of different types 
of analysis. 
Defects detected include: 

• references to uninitialised variables; 

• wasted computations on variables; 

• variables which do not contribute to outputs; 

• parameter mismatches of various types. 
   
The technique is valid for all paths and handles recursion [4] and some types of 
interrupts and exceptions. The analysis is performed bottom up and proceeds 
across procedure boundaries with the corresponding multiple aliasing handled 
explicitly. Multiple file problems are handled by firstly predicting an appropriate 
compilation order and then performing the analysis of the procedures in this order. 
The precise interface, i.e. the one in use and not necessarily the one declared, is 
documented for user convenience and reference. The mismatch between the 
actual interface and declared interface is often the source of serious errors. 



2.2 File Handling Analysis 
 
Olender and Osterweil [5, 6] were among the first to realise that traditional dataflow 
analysis of variables could be adapted to analyse the sequence of operations on 
files (i.e. open, read, write, close). When files are opened within a program and the 
program subsequently exits with some files not closed, there can be unfortunate 
side effects, for example, computer lock-up. By searching the system-wide control 
flow graph, annotated with file operations (over all files and all procedure 
boundaries), this algorithm checks that any file that is opened is subsequently 
closed on all exit paths. It also reports any possibility that a ‘write’ operation could 
be made to any unopened file. This can occur if there is any path from the start 
point of the program to the specific ‘write’ statement. The technique is able to utilize 
some knowledge about infeasible paths [7] to reduce false positive messages. 
 
 
2.3 Pointer Analysis 
 
Pointer analysis is a much-studied problem [8, 9]. A pointer is a program variable in 
its own right and hence must obey the usual dataflow rules as applied to ordinary 
variables. In addition, however, it can be dereferenced which means that 
operations are performed on the entity to which the pointer points. 
 
In the LDRA tool suite, pointer assignments, dereferences and uses are 
superimposed on the dataflow model of the entire system. This permits dataflow 
analysis to take into account assignments and other uses made by dereferencing 
pointers. Every pointer dereference is both a use of the pointer itself and of the 
variable or location to which it points. In general, dereference is a dynamic issue 
because a given pointer may, at various times, point to many different locations. 
However, there are a number of static analysis representations which can detect 
many, but not all, possible defects. The algorithm implemented works with a ‘last 
assigned value’ approach except for procedural pointers in which it uses an ‘all 
possibilities’ approach. The latter is not used for pointers in general, due to the 
possible combinatorial explosion. 
 
 
2.4 Null Pointer Checking 
 
When assignments to pointer variables are made with function return values, 
other pointer values or explicit null values, it is important to check that these 
pointer variables have sensible values before they are used. This technique 
searches the dataflow model annotated with the pointer operations and function 
calls, together with any conditional operations at splitter nodes, to ensure that 
every pointer which is assigned a value is checked (for null say) on all paths 
involving a use (i.e. a defuse path) of that pointer. This can detect most 
troublesome program pointer problems because it works over the complete 
control flow graph. It cannot detect cases when the wrong valid pointer value is 
used. 
 
 
2.5 Divide-by-Zero Analysis 
 
This analysis is performed by searching the dataflow model annotated with 
values and operations, to check when variables, which might have a zero value, 
are used as a denominator. The algorithm does not attempt to compute the set of 
values achieved by the variables; rather, it examines the constructs to predict 
when a variable might have a zero value. In this way, a fast algorithm is obtained 
which produces a minimum of false positive results. 
 
 
 
 
 
 



2.6 Array Bounds Checking 
 
Array bounds checking using techniques based on dataflow has been extensively 
studied [10]. However, in addition to statically checking array bounds by suitable 
scanning of the dataflow model, the LDRA tool suite also permits dynamic 
checking by means of instrumentation. Both techniques work on a system-wide 
basis projecting the bounds down to lower levels where the language fails to 
provide these details. 
 
 
2.7 Storage Analysis 
 
One of the major sources of faults in the execution of software in some languages 
is the exhaustion of available storage. Often this is caused by the programmer 
allocating memory and then omitting to free it subsequently. The control flow model 
is searched for uses of those constructs which explicitly allocate and free memory 
to ensure that all allocated memory is correctly freed on all exit paths. The 
algorithm also checks for the potential release of unallocated memory. 
 
 
2.8 Dead Code Analysis 
 
The flow graph, annotated with variables and operations is scanned to detect the 
case when specific computations do not lead to any changes in any outputs. Such 
computations can be safely removed from the code. Categories reported include 
unreachable, infeasible and ineffective code. The unreachable code can be 
identified by checking reachability from the program start point (or other points if 
required), and detecting infeasible branches of various types.  
 
Additionally, variables declared and never used, and variables used only once are 
identified for removal. It is also possible to detect infeasible branches during the 
dynamic analysis phase. The main purpose in detecting these defects in the static 
analysis phase is that it is cheaper to remove these defects before commencing 
dynamic analysis. 
 
 
2.9 Exact Semantic Analysis 
 
The validation process can be substantially enhanced if the user can provide a tool 
with information which is either hard to obtain by analysis or is from the application 
domain. Traditionally, this is supplied in the form of comments (usually referred to 
as annotations) which can be transformed automatically into allegations or 
assertions [11]. 
 
In the LDRA tool suite, assertions in the form of annotations are compared with the 
actual computations in order to detect violations. These annotations can be pre- 
and postconditions, loop invariants, etc. 
 
The LDRA tool suite uses annotations in two modes: static analysis mode, and 
dynamic analysis mode. With the former, the technique becomes approximate 
semantic analysis and with the latter, it becomes exact semantic analysis because 
the annotations are checked in the actual execution environment. In the static 
case, the engine which checks the annotations is software based and in the 
dynamic case, it is the run-time system. Clearly, checking semantic issues in the 
actual environment is more accurate than in a simulated environment. 
 
 
 
 
 
 
 
 



2.10 Information Flow Analysis 
 
Information flow analysis aims to discover the relationships between input variables 
and output variables [12]. This is performed in the LDRA tool suite by scanning the 
system-wide control and dataflow graphs to discover such relationships. In 
practice, other dependencies such as those introduced by design artifacts are also 
discovered. The relationships are explored in detail to find possible sources of 
faults. In fact, when used in the basic mode of identifying the relationships, very 
few general classes of obvious fault can be identified. 
 
However, the technique does become extremely powerful when combined with 
some knowledge of the application. The application knowledge can be 
encapsulated in the form of annotations describing the required relationships either 
system wide or for each procedure. The actual results can be compared 
automatically with those predicted from the requirements leading to a fast and 
powerful facility. These annotations are usually obtained by the application of 
formal methods to the requirements analysis and design which leads to accurate 
predictions of the required relationships. 
 
 
2.11 Side Effect Analysis 
 
The use of functions in complex expressions can be a source of error if the 
functions concerned have side effects. In particular, the result can be affected by 
the compiler’s order of evaluation. Frequently, compilers utilise any freedom 
permitted in the language definition of the order of execution to perform 
optimisation. The side effects which the tool identifies are classified as: 
 
• parameter side effects; 

• global variable side effects; 

• I/O side effects, both file and volatile location based; 

• class member side effects. 

 
Class member side effects are distinguished from global variable side effects 
purely because exponents of class-based languages need to feel that these 
languages are significantly different from others. As far as the tool is concerned, 
they are the same. 
 
All uses of such functions in positions where there could be evaluation problems 
are reported so that the relevant code can be restructured. 
 
 
2.12 Data Coupling Analysis 
 
This technique investigates the way in which procedures interact with data items 
which are not local to that procedure. The two mechanisms by means of which 
procedures acquire external data items are parameters and global variables. The 
term ‘global variable’ in this context covers all items visible inside a procedure and 
declared externally, so that class members can fall into this category. 
 
The task is to ensure that there are no possibilities of dangerous defects arising 
from the various aliasing mechanisms possible in many languages; for example, a 
global variable when passed as a parameter in a call then has two access 
mechanisms inside the procedure. The danger arises firstly from the programmer 
failing to appreciate this fact and thinking they are distinct and secondly from a 
compiler treating them as distinct when the programmer thinks they are the same. 
These problems can become quite subtle when a system has a complex hierarchy 
and the locations are treated alternate ways as they filter down that hierarchy. The 
use of pointers in such a scenario adds further complexity, to the point where it is 
usually beyond humans to comprehend. 



The LDRA tool suite has algorithms to detect problems of this type. They are again 
based on the dataflow model, are system wide and handle the aliasing 
complications of cross procedure boundaries and the use of pointers. 
 
 
2.13 LCSAJ Analysis 
 
The set of ‘linear code sequence and jump’ (LCSAJ) subpaths forms a basis set for 
the generation of program paths [13, 14]. As such, LCSAJs are a powerful vehicle 
for analysing path structure and generating targetted test data. The tool produces a 
test case plan targetted to the achievement of testing all the LCSAJs. 
 
The LCSAJ test case planning component is particularly important to users who 
wish to achieve a high level of test coverage at minimum cost. Essentially, the tool 
generates a spanning tree of the LCSAJs which can then be optimized in order to 
perform specific minimizations, such as construction of a set of paths (connected 
LCSAJs) to cover all the LCSAJs. The set of conditions which achieves this is then 
the input criterion for test case generation. 
 
 
2.14 MCDC Test Case Planning 
 
Modified condition decision coverage (MCDC) requires testing of decisions in a 
program such that changing the truth value of each individual condition within the 
decision forces a consequence on the overall decision’s outcome [15]. This is 
another area where use of mathematics is required. The problem is that an 
expression containing N conditions combined with the logical and and or 
operators, leads to 2N test combinations, of which only a set of N + 1 tests is 
actually needed to satisfy MCDC. 
 
In addition, there may be a number of different test data sets that satisfy MCDC 
and most programmers involved in this work cannot perform the necessary 
analysis manually. The tool therefore provides a test case planner which either 
guides testers through the process from start to finish or rescues them when they 
are part way through and have lost track of what to do next. 
 
The need for such a tool has increased as the avionics industry has moved to ever 
more complex conditional expressions, many of which have interdependent 
subconditions. It is not uncommon to have well in excess of 20 subconditions. 
 
2.15 Automated Test Case Generation 
 
The automatic generation of test data for the purpose of unit testing is one of the 
most important features of the LDRA tool suite. The analysis involved is able to 
handle recursive procedures, groups of mutually recursive procedures, and code 
distributed across files. The technique which is application independent is based 
around the relationships of literal values and associated constraints which are 
observed in association with the variables involved in the units under test. This has 
been implemented largely under pressure from experienced users who find that 
darkcorner testing is usually hard because the actual test data is not obvious but 
can be inferred from the presence of these program literals and their context. 
Surprisingly high coverage rates have been achieved for some classes of software. 
The user still has to provide the assurance that the actual outputs are correct. 
 
 
 
 
 
 
 
 
 



3 Tool Usage 
 
The environments in which the tools are used are extremely varied but the main 
field in which the formal methods are likely to be used is that of real-time 
embedded systems, mostly in the avionics, nuclear and telecommunications 
industries. In the avionics application area, the principal purpose is to show that the 
software conforms to the avionics DO-178B standard [16]. For safety-critical 
software needing certification at level A of this standard, the code must satisfy 
rigorous dynamic analysis coverage demands, including full MCDC (also 
demonstrated with the aid of the tool but outside the scope of this paper) and, in 
addition, a set of detailed static analysis requirements. It is these static analysis 
requirements which are satisfied primarily by the formal methods techniques 
featured in the tool. 
 
The principal benefit accruing from the use of the tool is the huge saving in 
manpower costs which are otherwise consumed in the task of showing 
conformance to the standard. Moreover, the DO-178B standard suffers from 
significant levels of ambiguity and variance in interpretation by the many 
certification bodies, both around the world and also within the United States. The 
totality of the methods presented by the tool spans a group of techniques, which 
have, to date, satisfied all these certification bodies. 
 
One of the major handicaps faced by analysis tools is the potentially huge number 
of false positive defects reported which are due to the presence of infeasible paths. 
The manual checking of these false messages is time consuming so considerable 
effort has been spent over a long time to detect these infeasible components [7] 
and remove them from the analysis. 
 
The LDRA tool suite has been used by every major avionics software developer 
around the world and the number of systems successfully certificated is already 
into the thousands. The high reliability of in-service avionics software controlled 
systems is a notable achievement and the contribution of this tool is significant. 
 
Also, it must be noted that the use of this tool does not in any way exclude the use 
of other formal methods. There are specific characteristics of some types of 
software which need to be demonstrated and for which the tool has no capability 
as yet, e.g. livelock or deadlock potential. Then again, the unit test capability of the 
dynamic analysis requires a detailed specification of each unit to be available and 
one convenient representation is that derived from one or more of the formal 
methods notations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Conclusions 
 
The contribution of the formal methods capabilities of this widely used software tool 
to the achievement of levels of software quality required by many international 
regulatory bodies is considerable. Nevertheless, there is much still to do. The 
current drive is to integrate the tool more closely into techniques capable of 
providing a sufficiently rigourous description of test data which can be used in the 
unit testing and dynamic analysis components of the tool. The users require a 
seamless (and simple) way to combine the benefits of this and many other tools. 
   
One of the major problems in the application of any technique that has been 
demonstrated experimentally to find defects is the type of software which users 
invariably generate. This means that the technique must be capable of handling 
huge systems, spread across many files with hugely different programming styles. 
Very often, the code producers are inexperienced in the area of careful code 
construction and hence the technique must be sensitive to hurt pride as well as 
responsive to the requirements of certification standards. 
   
The future appears to be that more and more organizations are producing critical 
code and they are doing so with relatively unskilled labour. The commercial 
imperative seems to be such that only the use of automated tools to guide and 
encourage these producers to the required levels (of the certification bodies) will 
prevent a move to downgrade the current high standards. 
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