
Testing Times for
Real Time Software

LDRA looks at ways to reduce the cost of
testing and maintaining code

Software Technology

Article by Bill StClair originally published in Automotive Electronics Magazine February/March 2005

For many years Coverage Analysis techniques have

given the avionics industry consistent, cost-effec-

tive error detection when applied to the analysis

of complex software control systems. Now, as the

automotive industry moves towards similar reli-

ance upon software control with similar concerns of

testing quality versus spiraling costs, it would seem

prudent to take note of the important lessons from

the avionics industry.

There are many types and levels of Coverage. Often

the term is applied to what is Function Coverage,

a measure that reports whether you invoked each

function or procedure. It is useful during preliminary

testing to assure at least some coverage in all areas

of the software and to eliminate gross deficiencies

in a test suite quickly.

In companies producing complex real time software

(RTS) this level of Coverage is generally not suffi-

cient and therefore, any Coverage technique that is

applied is typically expand-

ed to include Statement

and Branch Coverage.

Statement Coverage – also

called line coverage, seg-

ment coverage or basic

block coverage - reports

whether each executable

statement is touched, while basic block coverage is

the same as statement coverage except the unit of

code measured is each sequence of non-branching

statements. This greatly expands the range of the

Coverage graph, though only on a two-dimensional

plane.

Statement Coverage is the easiest of coverage met-

rics to maximise. It covers the whole of the source

code and helps the user to detect many defects that

may reside within infrequently used areas. As it is

relatively easy to maximise, it is not very expensive

or resource consuming, yet still improves confi-

dence in the correctness of the source code to a

great degree. However, by definition, simply exercis-

ing at 100% Statement Coverage means that there

are potentially paths through those statements that

have not yet been explored, and Statement Cover-

age cannot measure them.

Statement Coverage doesn’t discern various control

structures. For example, consider the following

C/C++ code fragment:

int* p = NULL;

if (condition)

 p = &variable;

*p = 123;

Without a test case that causes condition to evalu-

ate false, Statement Coverage rates this code fully

covered. In fact, if condition ever evaluates false,

this code fails. This is the most serious shortcom-

ing of Statement Coverage. If-statements are very

common.

Statement Coverage also

does not report whether

loops reach their termi-

nation condition - only

whether the loop body was

executed. Since do-while

loops always execute at

least once, Statement Cov-

erage considers them the same rank as non-branch-

ing statements.

Statement Coverage also ignores the logical opera-

tors (|| and &&). Moreover, Statement Coverage

cannot distinguish consecutive switch labels.

In order to have completeness and accuracy, at least

in terms of this two-dimensional Coverage graph,

obviously Coverage would need to factor the evalu-

ation of Decisions and the resulting code branches.

if (condition1 && (condition2 || function1()))

 statement1;

else

 statement2;

Testing Times for Real Time Software
Testing and maintenance of code constitute 70% or more of
the typical software lifecycle, but what strategies can be used
to manage these costs? Bill StClair at LDRA explains.

“Statement Coverage
means that there are poten-
tially paths through those
statements that have not

yet been explored”

2

But for many embedded applications, as suggested

by this example, Coverage must be expanded to

evaluate conditions and by inference, the state of

variables. Referred to as Condition Coverage, it

reports the true or false outcome of each Boolean

sub-expression, sepa-

rated by logical-and and

logical-or if they occur.

Condition Coverage

measures the sub-ex-

pressions.

In all but safety-critical

applications, analysing

individual conditions as

discrete events can lead to overlooking the opportu-

nity that a Coverage metric which effectively sub-

sumes all other Coverage measures offers. Consider

the gains in error prevention that can be achieved if

real test scenarios are envisioned in a “white box”

testing context.

How to Achieve Sufficient Coverage
How do you begin to get to a thorough level of Cov-

erage while achieving your productivity goals such

as Time to Market and Time to Quality?

Statement Coverage and Branch Coverage can

normally be made to reach unity without great effort

(although infeasible branches and code may be

discovered), but Test Path Coverage often lags State-

ment and Branch by some margin, because maximis-

ing this requires a demanding testing strategy.

If unity can be achieved for Test Path Coverage, then

the number of undetected errors remaining in the

subject program is substantially reduced. Maxim-

ising Test Path Coverage is a very thorough test

of a program, and is especially good at detecting

errors in looping constructs. Covering every state-

ment does not require loops to be covered at all - a

straight through path is all that is required. Testing

every branch ensures that a loop is executed once,

but testing every path however, also requires every

loop to be covered at least twice. For high integrity

code, it is recommended that Test Path Coverage be

maximised.

Evidence suggests that Test Path Coverage is the

most effective coverage technique for maximising

software quality and reliability. The goal is to maxim-

ise this and other associated coverage metrics at the

minimum effort and cost.

Increasingly software developers are turning to

commercially available software test tools to assist

with the complex test process that such techniques

demand. The more sophisticated of these tools also

incorporate rules based

analysis options and other

static analysis techniques

together with facilities for

applying these powerful

analysis techniques at the

unit (single function) level

up to sub-system and sys-

tem (multi-file).

So what does your Coverage tool
need to provide?

1. Exercise Coverage strategically (identifying infea-

 sible and unreachable code as well)

2. Facilitate achievement of Coverage using auto-

 mated test case/vector generation from the unit

 level upwards

3. Provide Visualisation and intuitive presentation

 of Coverage results for engineering analysis and

 guidance

Coupled with the use of tools developers should

also consider the following steps to a more efficient,

cost-effective means of achieving their Coverage

analysis goals:

3

“Evidence suggests that Test
Path Coverage is the most

effective coverage technique
for maximising software qual-

ity and reliability”

STEP 1: Construct the best possible functional tests

from a knowledge of what the software is supposed

to do. The source of this information should be a

requirements specification, a program specification

or user documentation. The execution of the source

code with this test data should then be monitored

with the aid of a test tool. When ideas for functional

test data are exhausted, inspection of the Cover-

age data will indicate those areas of the program

which have not yet been adequately tested. Further

test data sets should then be constructed and their

execution analysed. The Coverage accumulates the

results from each test data set and notes which

parts of the program were executed by each test

data set.

This process is continued until either ideas for func-

tional test data are exhausted or the required test

metrics are satisfied. If the former is true proceed to

Step 2; otherwise the task is completed.

STEP 2: Examine the test coverage metrics. If State-

ment coverage is not unity (i.e. every statement has

not been executed) it is probably due to a failure to

test special cases, error exits, etc. Because of these

possibilities, it is essential to accumulate the execu-

tion history profile because it is usually necessary to

run the program a number of times to execute every

line of code. It is often found that the functional

tests cover only 40-60 per cent of the executable

statements.

When Statement coverage attains unity and every

statement has been executed, it is then time to

move to Step 3.

STEP 3: Examine any unexecuted branches. Some

of these branches can usually be executed by

constructing special cases. When this strategy is

exhausted it is more cost-effective to move on to

Step 4 - Test Path Coverage since the program analy-

sis needed to explore the remaining unexecuted

branches is similar to that needed for the unexecut-

ed Test Paths.

STEP 4: Some unexecuted branches and Test Paths

may be traced to causes such as special cases which

can arise only under error states, either of the pro-

gram or of underlying computational processes. This

is often referred to as defensive programming and

these Test Paths should be left intact.

Finally

It will often be found on further inspection that

many of the unexecuted Test Paths are infeasible,

i.e. they cannot be executed for any test data. This

may suggest that a portion of code needs rewriting

because it is either inelegant, inefficient or incor-

rect. Furthermore, when this code is rewritten, other

Test Paths which were related to the poor code may

also have been removed. Some infeasible Test Paths

will be considered inoffensive and can be left at the

price that program readability is reduced. Provided

the cause is known, these Test Paths may be ignored

with unity unattainable. If the infeasible Test Paths

are removed then the source code will be more ef-

ficient, robust and occupy less space.

Bill StClair is a Technical Evangelist at LDRA

www.ldra.com

4

LDRA Headquarters

Portside, Monks Ferry,
Wirral, CH41 5LH
Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

LDRA Technology Inc. (US)

Lake Amir Office Park
1250 Bayhill Drive Suite # 360
San Bruno CA 94066
Tel: (650) 583 8880

