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"Beware of bugs in the above code; I have only proved it correct, not tried it". 
—Donald Knuth 

Introduction 
Manufacturers of medical devices that include software face the same challenges as 
everyone building complex systems: time, quality, size (number and complexity of 
features), and cost. To these must be added approval by the FDA, MDD, MHRA, 
Health Canada and their counterparts in 
every jurisdiction where the devices will 
be used. 

In this paper, we look at a) how 
dynamic code analysis can support 
demonstrations of compliance with 
safety requirements, and b) key 
capabilities we should look for in 
dynamic analysis tools. We then present 
in appendices, to help with tool 
selection, tables mapping development 
activities with requirements in the 
IEC 62304 standard: and, to help with 
OS selection, a short description of OS 
characteristics that can facilitate the 
design, development and approval of 
safety-related software. 

Demonstrating 
dependability 
To ensure that their devices receive 
regulatory agency approvals, 
manufacturers must demonstrate that 
the devices meet their safety 
specifications. For the device software, 
this means demonstrating that the 
software meets required standards of 
dependability (reliability and 
availability). Whether reliability or 
availability is more important depends 

Expertise and Process 

Expertise and good development 
processes are not guarantees that a 
system will meet its required level of 
dependability, or even that the system 
will be a good one. However, they do 
vastly improve the chances that this will 
be the case.  

Great expertise is needed to produce a 
design of the simplicity required for a 
safety-critical system. A comprehensive 
understanding of software validation 
methods, the software being evaluated, 
and the context in which it is evaluated 
(including validations of similar systems) 
is required to demonstrate that the 
software system in question meets its 
safety requirements. 

It is no accident that IEC 62304 focuses 
on the development process. 
Considering this, we would do well, not 
only to develop our software in an 
environment that meets the most 
exacting quality management standards, 
but also to use tools that both help 
ensure we maintain these standards and 
provide evidence of this for auditors and 
regulatory agencies. 

 



 Using Dynamic Analysis to Support Medical Device Software Approval 

LDRA and QNX 2 

on how the system will be used. Carefully limited claims and precise dependability 
requirements provide a defined context and accurate measures in and against which 
we can validate a software system’s dependability.1 

Defining acceptable risk 
No software system is absolutely dependable, and even if a system were absolutely 
dependable, we would have no way of proving this. The techniques available to us 
can never prove that the system will never fail. They can only help us find faults and 
eliminate them, and estimate the probability of failure. A software system is thus 
deemed “safe” when its probability of failure is sufficiently low as not to present an 
unacceptable risk. Precisely what “unacceptable risk” or, rather “acceptable risk” 
means differs between industries and jurisdictions. Methods include: 

ALARP (As Low as Reasonably Practical): the potential hazards and associated risks 
are identified and classified as a) clearly unacceptable, b) tolerable if the cost of 
removing them would be prohibitive and c) acceptable. All unacceptable risks 
must be removed, but the tolerable risks are removed only if the cost and time 
can be justified. 

GAMAB (globalement au moins aussi bon) or GAME (globalement au moins 
équivalent): the total risk in the new system must not exceed the total risk in 
comparable existing systems. 

MEM (Minimum Endogenous Mortality): the risk from the new system must not 
exceed one tenth of the natural expected annual human mortality in the area 
where the device is to be deployed. For example, for people in their mid-20s in 
western countries this value is about 0.0002. 

All these techniques must be then adjusted depending on the number of people that 
could be simultaneously affected by a dangerous failure of the equipment. 

With ALARP, in order to decide which risks are unacceptable, tolerable, and 
acceptable, we need to determine numerical values for the maximum allowed 
probability of dangerous failure for each risk. With GAMAB and MEM we will need to 
determine this numerical value globally. 

Techniques for proving software dependability 
No single technique available to us is sufficient for proving that a software system 
meets its dependability requirements. Our demonstration of dependability must, 
therefore, be built using a complete arsenal that combines strategies and 
techniques. This arsenal can include but is not be limited to: 

• a development environment that complies with IEC 62304 or another 
comparable standard 

• requirements tracing matrices to ensure that all safety-related requirements are 
addressed 

• formal design methods and tools, which can provide mathematical proofs of 
design correctness 

• fault-tree analysis using methods such as Bayesian Belief Networks 

                                                        
1 See Chris Hobbs, et al. “Building Functional Safety into Complex Software Systems”, Parts I 

and II. QNX Software Systems, 2011. www.qnx.com. 
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• retrospective design validation, which evaluates system design based on what 
has actually been built 

• static analysis using methods such as model checking and data flow analysis 

• testing using direct fault detection techniques such as dynamic analysis to 
identify faults through the errors and failures they cause 

 

Figure 1. Different analysis techniques and the relevant sections in IEC 62304 shown over a 
traditional “V” development model. None of the techniques shown is process dependant. 
A similar representation could be made for any other development process model: 
waterfall, iterative, agile, etc.  

 

IEC 62304 
IEC 62304 is becoming the de facto global standard for medical device software life 
cycle processes. The FDA has driven its development, and it is being harmonized 
with EU standard 93/42 EWG (MDD)2. 

Like the other standards shown in Figure 1, IEC 62304 draws on established 
industry-specific practices to complement the principles of IEC 61508. For example, 
unlike ISO 26262 or even IEC 61508 itself, IEC 62304 does not define common 
numerical values for acceptable failure rates (a Safety Integrity Level (SIL) rating). 
Instead, it defines safety classifications according to the level of harm a failure could 
cause to a patient, operator or other person. These classifications are analogous to the 
FDA classifications of medical devices: A (no possible injury or damage to health), B 
(possibility of non-serious injury or harm) and C (possibility of serious injury or harm, 
or death). 

For the most part, the standards derived from IEC 61508 are similar in that they set 
out the processes (including a risk management process), activities and tasks 
required throughout the software lifecycle, stipulating that this cycle does not end 
with product release, but continues through maintenance and problem resolution as 
long as the software is operational. Ultimately, regardless of how they specify the 

                                                        
2 Cristoph Gerber, “Introduction into software lifecycle for medical devices”, Stryker Navigation: 

Presentation (4 Sept. 2008) 
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level of acceptable or unacceptable risk, IEC 62304, IEC 61508 and other like 
standards provide guides and measures which we must use to demonstrate that our 
system meets its safety requirements. 

 

Figure 2. IEC 62304 is derived from IEC 61508 and hence shares its roots with other industry 
specific standards. Note that IEC 62304 expressly states that it does not depend on 
IEC 61508, but that IEC 61508 can be consulted for tools and techniques3. 

Dynamic analysis 
Dynamic analysis is used to examine execution of the compiled source code, either 
in its entirety or on a piecemeal basis. Since dynamic analysis executes code, it tests 
not only the source code, but also the compiler, the linker, the development 
environment and, potentially, the target hardware. Dynamic analysis generally 
involves structural (code) coverage analysis and unit testing, which together can 
provide not only a very effective means for detecting errors in the software, but also 
evidence showing what software has been exercised and how this software has been 
exercised. 

Structural coverage analysis is fundamental in the aviation industry standard DO-
178B/C. While aviation accidents are dramatic and often tragic, and hence tend to 
make the news more often than do accidents with medical devices, the aviation 
industry does have an exemplary safety record. Mile for mile, flying is one of the 
safest modes of transport. 

Structural coverage analysis 
Dynamic analysis tools use either intrusive probes or non-intrusive probes. An 
intrusive probe system puts software probes (counts or procedure calls) into the 
code being analysed (high level language or assembler). These probes record 
information about the execution process and produce execution histories. 

Intrusive and non-intrusive probes 
When using intrusive probes, demonstrating that the probes do not change the 
functionality of the instrumented code is essential to the validity of the analysis. In 
addition to proving that intrusive probes do not affect the source code, such a 
demonstration usually requires showing that the probes themselves introduce 
nothing which would expose weaknesses in the compiler. This can be achieved by 
using a Compiler Validation Suite (a set of source code artefacts designed to confirm 

                                                        
3 Annex C. 
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that a compiler performs correct computations) to show that compiler validation is 
not affected by the instrumentation process.  

A non-intrusive system obtains the same or similar information as does an intrusive 
system, but directly from the processor, and the dynamic analysis tool then relates 
this low-level information back to the original representation (high-level language or 
assembler). Unfortunately, for various reasons (such as the effects of compiler 
optimization) it is not always possible to establish this relationship unambiguously. 

Note that, as with all testing, in a complex software system it is never possible to 
demonstrate with absolute certainty that the probes associated with structural 
coverage analysis do not affect the behaviour of the code. For instance, by definition 
Heisenbugs are irreproducible; usually considered to be caused by subtle timing 
conditions, they may be corrected (or even introduced!) by any changes to the code, 
including instrumentation. 

 

Figure 3. In screen captures from an LDRA code coverage tool, colour-coded graphical 
information clearly identifies unexercised code. 

Evidence for the dependability estimate 
The trick, then, is not to prove the absence of bugs (a formal impossibility), but to 
gather evidence that we can include in our estimate of the software’s dependability. 
In particular, if we use SOUP (Software Of Unknown Pedigree) in our system, 
structural coverage analysis can help show that there is no unused or superfluous 
code, in compliance with, for instance, ANSI/AAMI/IEC TIR80002-1:20094, table 
B.2: “Use only the SOUP  features required: remove all others”. 

Unit testing 
Unit testing verifies small units, making it relatively simple to observe incorrect 
behaviour and hence to detect faults. With unit testing, procedures or collections of 

                                                        
4 Guidance on the application of ISO 14971 to medical device software 
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procedures are tested in isolation from the complete system in order to establish that 
they satisfy specific requirements. 

Typically, these requirements are more comprehensive than those of the project, so 
that, for example, boundary conditions can be tested: a test for rendering a screen 
display of 750 x 1,000 pixels may test up to, say, 1,200 x 1,600 pixels. The interface 
to each procedure is tested for input values that may be excluded by higher-level 
procedures, exploring generality—that procedures always behave as required. 

Unit testing provides access for the exploration of housekeeping code, and otherwise 
infeasible, protective code components can similarly be tested. Some instances of 
coincidental correctness can be removed; for instance, in the bigger system, a 
procedure may be called when it should not be or vice versa and yet leave the 
observer with the impression that all is well. Because we are dealing with a smaller 
component, it is easier to observe incorrect behavior and hence detect faults,  
 
The issue of how to handle procedures called by the unit under test is dependent of 
the purpose of the particular test in question. Indeed, unit testing traditionally 
employs a bottom-up testing strategy (sometimes called module or integration 
testing), where units are tested then integrated with other test units. Where called 
functions are excluded from the tests they can be replaced by “stubs”. 

 

Figure 4. Performing structural coverage analysis on the whole or a subset of the system 
provides great flexibility.  

 

When combined with structural coverage analysis, the flexibility of being able to 
include as much or as little of a call tree as desired in the tests facilitates achieving 
the coverage required from the most demanding qualification and certification 
authorities. 

Structural coverage metrics 
One of the most difficult steps to take when validating any system is deciding when 
to stop testing. This decision should be made in the context of the system’s 
dependability requirements, and ultimately it depends on the IEC 62304 and 
regulatory agency safety classifications of the medical device using our system. 

Coverage metrics can help gauge how much has been achieved by dynamic testing, 
and can be used to inform the decisions about how much testing remains to be 
done. These metrics include: 
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• Statement Coverage: the most basic metric, which consists of the proportion of 
statements in the system that have been executed. 

• Branch/Decision Coverage: the proportion of control flow branches covered. On 
average, each statement and each procedure call is executed twice as often as 
for statement coverage alone.  

• LCSAJ Coverage: a path-related metric, LCSAJ (linear code sequence and jump) 
coverage is more demanding than branch/decision coverage and is potentially 
useful in the most critical parts of the application. It is available with the more 
sophisticated tools on the market. 

• Modified Condition/Decision Coverage: full MC/DC coverage is achieved when 
every point of entry and exit in the program has been invoked at least once, 
every condition in a decision in the program has taken on all possible outcomes 
at least once, and each condition has been shown to affect that decision 
outcome independently. 

Choosing a software analysis tool 
All software tool vendors are keen to sell their wares and, understandably, few 
vendors are particularly keen on advertising what their tools might not do. The 
following are a list of key points to consider when evaluating a software analysis tool. 

Fault reporting 

• Does the tool produce many false positive reports; that is, does it report faults 
that are not in fact present?  

• Does the tool produce false negative reports; that is, does it fail to report defects 
that are in fact present?  

Project compatibility 

• Does the tool take too long when viewed against the overall benefits of the 
information it generates? The time a tool takes to run is not usually an issue, but 
this should still be a consideration in case it is excessive and hence becomes a 
problem for the project.  

• Does the tool support the preferred dialect for the project where it is to be used? 
Most compilers implement their own version of the language in which the code 
to be analyzed is written. It is essential, therefore, to ensure that analysis tools 
support the language variant used in the project. 

• How readily can the tool be incorporated into the development process? A tool is 
of little use if it requires a disproportionate effort to integrate into the project. 

Capabilities and limitations 

• Does the tool work across the complete system? This is an important question 
because some faults can only be detected when the whole system is analyzed.  

• Is the tool capable of accommodating inter-procedural recursion? Even in a 
single file, inter-procedural recursion is important if a procedure can only be 
analyzed fully once another procedure has been analyzed. 

• What are the tool’s limitations? All tools have limitations, including the amount of 
code they can analyze, the depth of blocks they can handle, the bracket nested 
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depth they permit, their symbol table size, etc. These limitations and their 
implications for the project should be noted and understood. 

Conclusion 
With complex software systems at the heart of so many medical devices, the success 
of these devices is increasingly dependent on the manufacturer’s ability to 
demonstrate that these systems meet required levels of dependability. While 
regulatory agencies such as the FDA, MDD and MHRA approve the entire device 
and not its parts for market, the evidence presented to demonstrate the 
dependability of the device software (the software Safety Case) are essential for 
device approval. Hence, close attention to design and development practices, and a 
careful choice of validation techniques and the tools used to implement these are 
essential to the success of any medical device project that involves software. 
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Appendix A: IEC 62304 and development activities 
The tables in this section map paragraphs in IEC 62304 with software design, 
development and validation activities. Adherence to IEC 62304 doesn’t guarantee 
that the software will meet sufficient dependability requirements or that agency 
approvals will be forthcoming. However, it will help ensure that the project follows 
good processes, that requirements are clear at all levels, and that a Safety Case can 
be built for the completed product. 

Legend 

“+”  The method is recommended for this Class. 
“✔” Software test tools are likely to aid test effectiveness and efficiency. 

 

5.2 Software requirements analysis 
Class 

A B B 

5.2.1 
Define and document software requirements from SYSTEM 
requirements 

+ 
✔ 

+ 
✔ 

+ 
✔ 

5.2.2 Software requirements content 
+ 
✔ 

+ 
✔ 

+ 
✔ 

5.2.3 Include RISK CONTROL measures in software requirements  
+ 
✔ 

+ 
✔ 

5.2.4 Re-EVALUATE MEDICAL DEVICE RISK ANALYSIS 
+ 
✔ 

+ 
✔ 

+ 
✔ 

5.2.5 Update SYSTEM requirements 
+ 
✔ 

+ 
✔ 

+ 
✔ 

5.2.6 Verify software requirements 
+ 
✔ 

+ 
✔ 

+ 
✔ 

Table A1. Test tool capabilities mapped to IEC 62304 section 5.2 Software requirement 
analysis 

5.5 Software unit implementation and verif icat ion 
Class 

A B C 

5.5.1 Implement each software unit SOFTWARE UNIT  + ✔ + ✔ + ✔ 

5.5.2 Establish SOFTWARE UNIT VERIFICATION PROCESS   + ✔ + ✔ 

5.5.3 SOFTWARE UNIT acceptance criteria  + ✔ + ✔ 

5.5.4 Additional SOFTWARE UNIT acceptance criteria    + ✔ 

5.5.5 SOFTWARE UNIT VERIFICATION   + ✔ + ✔ 

Table A2. Test tool capabilities mapped to IEC 62304 section 5.5 Software unit 
implementation and verification 
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5.5.4 Addit ional SOFTWARE UNIT acceptance criter ia Class C 

a) proper event sequence + 
b) data and control flow + ✔ 

c) planned resource allocation  + 
d) fault handling (error definition, isolation, and recovery)  + 
e) initialisation of variables + ✔ 
f) self-diagnostics  + 

g) memory management and memory overflows + ✔ 

h) boundary conditions + ✔ 

Table A3. Test tool capabilities mapped to IEC 62304 section 5.5.4 Additional SOFTWARE 
UNIT acceptance criteria 

5.7 Software SYSTEM test ing 
Class 

A B C 

5.7.1 Establish tests for software requirements    + ✔ + ✔ 

5.7.2 Use software problem resolution PROCESS  + ✔ + ✔ 

5.7.3 Retest after changes    + ✔ + ✔ 
5.7.4 Verify SOFTWARE SYSTEM testing   + ✔ + ✔ 

5.7.5 SOFTWARE SYSTEM test record contents   + ✔ + ✔ 

Table A4. Test tool capabilities mapped to IEC 62304 section 5.5.4 software system testing 
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Appendix B: the operating system 
No matter how good the validation tools, ultimately it is the device and its software 
that must receive approval. In any system that uses software, everything above the 
silicon depends on the OS. This means that any medical device that includes a 
software component can only be as dependable as its OS. This OS must be able to 
support the claims we make about the device’s safety. 

A comprehensive discussion of requirements for OSs used in safe systems would fill 
more than a few library shelves. It is, nevertheless, worth noting, at a very high level, 
some key OS requirements we should look for when selecting the OS for our safe 
system. 

Real-time guarantees 
Only a real-time operating system (RTOS) is designed to ensure the timely responses 
required for the dependability that is fundamental to any safe software system. 

Architecture 
A failure in a real-time executive or monolithic OS usually requires a device reboot, 
compromising system availability. With a microkernel RTOS, applications, device 
drivers, file systems, and networking stacks all reside outside the kernel in separate 
address spaces, and are thus isolated from both the kernel and each other. A fault in 
one component will not bring down the entire system. 

Memory protection 
The OS architecture should separate 
applications and critical processes in 
their own memory spaces so that a fault 
cannot propagate across the system. 

Priority inheritance 
To protect against priority inversions the 
RTOS should support assigning, until 
the blocking task completes, the priority 
of a blocked higher-priority task to the 
lower-priority thread doing the blocking. 

Partitioning 
To guarantee availability, the RTOS 
should support fixed or, preferably, 
adaptive partitioning, which enforces 
resource budgets but uses a dynamic 
scheduling algorithm to reassign CPU 
cycles from partitions that are not using 
them to partitions that can benefit from extra processing time. 

High availability 
A self-starting software watchdog should monitor, stop and, if safety can be assured, 
restart processes without requiring a system reset. If a restart is not a safe alternative, 
then the watchdog should set the system to its design safe state. 

 

Figure 5. In a microkernel RTOS, system 
services run as standard, user-space 
processes. A failure in one user-space is 
isolated to that space; the microkernel 
and other user-spaces are protected. 
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